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LE'ITER TO THE EDITOR 

Exact soliton solutions for two spacetime dimensional 
boson-fermion system 

J Kuczydski, R MaAka and J Sladkowski 
Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice, Poland 

Received 24 May 1985 

Abstract. The exact soliton solutions for the boson-fermion system are presented. They 
have the generalised kink solution character. A formal solution corresponding to the 
fractional charge is suggested. 

We would like to present the soliton-like solutions for the classical non-linear scalar 
field 40 coupled by the Yukawa interaction to the fermion field +. An interaction of 
this type is typical in physics and it appears, for example, in the Weinberg-Salam 
model where it describes the Higgs bosons coupled to the fermion field. The fascinating 
thing is that the soliton type bound states of this system can have a fractional effective 
charge (Jackiw and Rebbi 1976, Bullough and Caudrey 1980). The existence of such 
solutions in nature seems to be more fascinating still (Su et a1 1979, 1980). 

Let us consider the system with Lagrangian density as 

z=ia,cpap"cp+itjif+-~(~2-a2)2- GJ+Q. (1) 
In the (1 + 1)-dimensional spacetime only the scalar field part of (1) with G = 0 gives 
the so-called kink solution (Bullough and Caudrey 1980). The aim of this letter is to 
present explicitly the soliton solution for the full boson-fermion system (1). 

In the (1 + 1)-dimensional case it is very useful to bosonise the fermion field (Bardeen 
et a1 1983) 

itjif+ = i(a,u)' (2a) 

44 = -C,Np COS(~&U) (26) 

i y ,+  = (1/&)&,"aPu. (2c) 

z==(d,cp)'+f(a,u)'-A(~*- a') - 2 G G p  C O S ( ~ & U ) ~ .  (3) 

This leads to the Lagrangian density of the two boson fields: 

This Lagrangian density may be interpreted as the scalar and fermion field condensate 
Lagrangian density. This is the simplest model describing the fermion-soliton interac- 
tion which can lead to instability-the Callan-Rubakov effect (Bennett 1984). The 
electric charge 

1 1 m 

Q = dx I&,,+ = -Au = -[ ~ ( c o )  - u(-co)] G G  
is conserved in this system. 
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When the Yukawa interaction vanishes (G  = 0) the chirality 
m 

x = dx $4 

is also conserved. 
The Euler-Lagrange equations for (3) are: 

0 cp + 4A ( cp2 - a2)cp + 2J;;Gp COS(2fiU)Q = 0 ( 6 )  

OQ -4.rrGp sin(2fiu)cp = O .  (7) 
The simplest solutions of these equations can be obtained in the case of U = constant 
if s in(2f iu)  = 0 in (7). This means that cos(2fiu) = *1 which gives us two solutions 
according to the chirality sign ( x  = *CO). Equation (6) now takes the form 

This equation can be regarded as the Euler-Lagrange equation for the effective 
Lagrangian describing only the scalar field 

where the potential U,, or V is asymmetric and depends on the fermion field chirality. 
The asymmetric Lagrangian and solitons were examined by Kuczyfiski and Mafika 
(1985). It ought to be emphasised that the change of the chirality sign means the scalar 
field reflection (cp + -9). The potential U:, is presented in figure 1 .  Let us make the 
field cp shift 

c p = G + b  

Figure 1. The asymmetric potential Uef. The soliton corresponds to the segment E and 
the kink corresponds to the segment ( - U ,  + a )  for G = 0. 



Letter to the Editor L93 

in order to remove the constant term in (8) which has the meaning of the coordinate 
system origin displacement to the extremum of Uep This demands b to fulfil the 
third-order equation 

b3 - a’b f GpJ;;/2A = 0 (10) 

possessing two solutions if G2 = 16A2a6 /~p2 ,  three in the case G2 < 1 6 A 2 a 6 / ~ p 2  and 
one in the opposite case. After this shift equation (8) takes the following form: 

0 4 + 4AG3 + 12Ab+’+ 4A (3 b2 - U ’ ) +  = 0. (11) 

This equation is easy to integrate in the (1 + 1)-dimensional spacetime case. We obtain: 

d+ =&,+e 1 [AG4+4bAG3 + 2A (3b’ - aZ)q2+ 

where A is an arbitrary constant. Only in the case of the shift to the shallower minimum 
is this solution bounded and in the case when A = 0 this solution is not an oscillating 
type. The integral in (12) can be rewritten in the following form: 

d+ 5 a(+ -4(+ - z2)11/2’ 
2 1/2= 

d+  5 +[+’+4b++2(3bz-a )] 

It is obvious that 

Z I =  -2b+[2(a2- b2)I1/’ 

z1+ ~2 = -4b 

~2 = -26 -[2(a2 - b2)I1/’ 

z ~ z Z =  2(3b2- U’) .  

When b + a z1 and z2 tend to -2a. Using the first Euler substitution 

[ (4 - z1)( + - z2)]1/2 = t - v; 
we obtain the solution 

,. 1 - tanh2( +/2) 
q A = Z 1 Z 2 ~ 1 + ~ Z - 2 ~ t a n h ( + / 2 )  

with 

+ = ( ~ A z ~ z ~ ) ’ / ’ ( x  -xO).  

This solution has an inflection point at +=O. When z1 tends to z2 then ++ 
- a  + a  tanh( +/2) which is the shifted kink. This shift is caused by translation of the 
origin of the coordinate system to the minimum. The second Euler substitution ( z1 # z2) 

leads to the symmetric solution 

1 - tanh2( +/2) 
z2 - z1 tanh’( 9/2) 4 s  = ZlZZ 

with an extremum at 9 = 0. When z1 + z2, 4, tends to the constant solution GS = -2a. 
The solution q, could be obtained from the solution by shifting the coordinate 
centre from the inflection point + = 0 to the extremum: 

+0/2 = -tanh-’(-). 
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The relation 

6s($/2) = $A(;$ -f$O) (17) 

is fulfilled. The extremum of the solution GA depends on G and when G + 0 or z1 + z2, 

it tends to infinity whereas for the inflection point it is shifted. This coordinate system 
causes movement that tends to the constant equal to -2a, the solution for G = 0. We 
notice that according to the chirality sign two solutions & exist. As A u = O  both 
solutions have the electric charge Q = 0. These solutions generalise the kink solution 
and when G 0 continuously tend towards the kink solution, but their shapes definitely 
differ from kink. They are one-dimensional equivalents of the dot or the bubble when 
,y = -cc and +a, respectively. The deformed kink can be regarded as the bounded 
coherent state of scalar bosons and fermions, particles and antiparticles with total 
electric charge 

Q=O. 

As both solutions 6 ,  and 4- are symmetric with regard to the rp axis (see figure 2), 
we can obtain the new solution by piecing together different chirality solutions at the 
point xo. The point xo is the solution of the equation 

++(+x,) = 0. 

Figure 2. The soliton solution of the model presented for x = --a5 and +03. The constant 
xo is chosen so that the minimum is at 0. 

The joined solution has the form (see figure 3):  

However, for the fermion field there is a discontinuity. 
1 and for &(x), c o s ( 2 f i a )  = -1 which means that 

(18) 

Indeed, for $+(x), cos(2v%u) = 
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Figure 3. The fractional charge solution. 

and Au = -f& which on the basis of (4) gives a fractional charge corresponding to 
this solution. By piecing together solutions at --x we could obtain the Q = J  solution, 
so a fermion-boson soliton bound state with fractional total charge could be created. 
Even if this state could be unphysical this seems to be a very interesting and unusual 
fact and will be investigated in future papers. 

The authors would like to thank one of the referees for illuminating remarks. 
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